ABP41 is involved in the pollen tube development via fragmenting actin filaments.
نویسندگان
چکیده
ABP41 is identified as a novel member of plant villin/gelsolin/fragmin superfamily proteins from lily pollen, which binds stoichiometrically to actin filaments and severs them in vitro. To further understand its in-vivo function and the potential molecular mechanisms, biochemical analysis, fluorescence microscopic observation and microinjection assays were performed. Different biochemical measurements showed that ABP41 maintained actin filaments in forms of short F-actin in vitro. Microinjection of ABP41 into pollen tubes could fragment the pre-existing actin filaments, inhibit the velocity of cytoplasmic streaming, and shorten the length of the clear zone of pollen tube. In addition, it was found that the endogenous ABP41 expressing level was dynamically corresponding to the short actin filament structure in pollen at different stages of pollen germination. Our results suggest that ABP41 is involved in the regulation of actin dynamics during the pollen germination process via maintenance of short dynamic actin filaments.
منابع مشابه
Annexin5 Plays a Vital Role in Arabidopsis Pollen Development via Ca2+-Dependent Membrane Trafficking
The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative "linker" between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for ...
متن کاملArabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth.
Actin cables in pollen tubes serve as molecular tracks for cytoplasmic streaming and organelle movement and are formed by actin bundling factors like villins and fimbrins. However, the precise mechanisms by which actin cables are generated and maintained remain largely unknown. Fimbrins comprise a family of five members in Arabidopsis thaliana. Here, we characterized a fimbrin isoform, Arabidop...
متن کاملArabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube
The actin cytoskeleton is increasingly recognized as a major regulator of pollen tube growth. Actin filaments have distinct distribution patterns and dynamic properties within different regions of the pollen tube. Apical actin filaments are highly dynamic and crucial for pollen tube growth. However, how apical actin filaments are generated and properly constructed remains an open question. Here...
متن کاملOrganization and regulation of the actin cytoskeleton in the pollen tube
Proper organization of the actin cytoskeleton is crucial for pollen tube growth. However, the precise mechanisms by which the actin cytoskeleton regulates pollen tube growth remain to be further elucidated. The functions of the actin cytoskeleton are dictated by its spatial organization and dynamics. However, early observations of the distribution of actin filaments at the pollen tube apex were...
متن کاملArabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars.
Apical actin filaments are crucial for pollen tube tip growth. However, the specific dynamic changes and regulatory mechanisms associated with actin filaments in the apical region remain largely unknown. Here, we have investigated the quantitative dynamic parameters that underlie actin filament growth and disappearance in the apical regions of pollen tubes and identified villin as the major pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant
دوره 1 6 شماره
صفحات -
تاریخ انتشار 2008